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Abstract. The electronic properties of the lanthanide Ln3+ ions are systematically investigated through
the NMR of the protons of the tetramethylammonium ion (CH3)4N+, used as a probe in D2O solution.
The effective magnetic moments on the Ln3+ ions are obtained by measuring the paramagnetic shift of the
proton resonance line due to the demagnetizing field that is proportional to the rare earth concentration.
These results allow to estimate the sizes of the total splitting of the crystal field acting on the ground
multiplet of the various lanthanides. The measured intermolecular longitudinal relaxation rates of the
(CH3)4N+ protons are compared with the computed values, both of the usual Solomon theory and of the
Curie mechanism. The measured values are intermediate between those predicted by the two theories. This
allows a rather accurate determination of the lifetimes of the electronic levels of the Ln3+ ions, as they
little depend on the details of the description for the relative spatial microdynamics of the (CH3)4N+/Ln3+

repulsive ion pair.

PACS. 76.60.-k Nuclear magnetic resonance and relaxation – 76.30.Kg Rare-earth ions and impurities –
75.10.Dg Crystal-field theory and spin Hamiltonians

1 Introduction

Over the past decades, the investigation of paramagnetic
molecules by nuclear magnetic resonance has become a
powerful and promising research tool in the physical chem-
istry of solutions [1–4].

Relaxation of nuclei in solutions of paramagnetic ions
is dominated by the interactions with the electronic mag-
netic moments on the ions [5]. It has been recognized that
the experimental results can be interpreted through con-
sideration of the magnetic dipolar interaction between the
nucleus and the electronic magnetic moments [6], and of
the isotropic hyperfine nucleus-electron coupling [5].

Among the first investigated systems were solutions
with paramagnetic transition metal ions [7] or with para-
magnetic free radicals [8]. The latter have been extensively
used because they induce the dynamic nuclear polariza-
tion (DNP) in the NMR magnetometers operating in the
very weak earth magnetic field [9–11]. More recently, spe-
cial attention has been paid to the water proton relax-
ation due to trivalent lanthanide aquaions [12]. This kind
of study for the rare earth and actinide cations is necessary
for a comprehensive treatment by the methods of statisti-
cal thermodynamics of the preferential solvatation mech-
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anisms, which govern the separation of the f elements
during the reprocessing of the used nuclear fuel [13].

In a recent work [14] the longitudinal relaxation rate
and the self-diffusion coefficient of the tetramethylam-
monium protons were investigated in D2O solutions of
hydrated Gd3+ paramagnetic impurities, without and
with complexing NO−3 . It was shown that at high mag-
netic fields the standard dipolar relaxation formalism of
Solomon [6] is valid for the Gd3+ lanthanide, i.e. its elec-
tron relaxation times are much longer than the transla-
tional correlation time of the interionic Brownian diffu-
sion.

In this paper the NMR spectrum and the relaxation
of the protons on a probe solute (CH3)4N+ in D2O so-
lution are systematically investigated for all the hydrated
lanthanide ions Ln3+, ranging from Ce3+ to Yb3+.

More precisely, two kinds of experiments were per-
formed. Firstly, the paramagnetic shifts of the proton res-
onance line were measured versus the rare earth concen-
trations. The study of the intramolecular paramagnetic
shifts of nuclei belonging to a stable molecule has been rec-
ognized as a powerful tool for getting information about
the relative positions of the nuclei with respect to the
paramagnetic center and about the energy level scheme
arising from the ligand field [1]. Unfortunately, this kind
of approach is hardly tractable for hydrated Ln3+ com-
plexes where the studied water nuclei have a fast exchange
rate between the complex and its molecular environment.
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Then, the complete hyperfine Hamiltonian of such a nu-
cleus with the electrons of a given Ln3+ ion is not con-
stant in any reference frame bound to the complex [1].
The interpretation of the paramagnetic shift yields less
information, especially if it is obscured by the contribu-
tion of the long range demagnetizing field [15,16], stem-
ming from the other Ln3+ ions. Here, the situation is much
simpler. We are concerned with the paramagnetic shifts of
the (CH3)4N+ protons which are well apart from the the
electronic magnetic moments on the Ln3+ complexes, be-
cause of the strong Coulomb repulsion between these ions.
Then, as shown in Section 3.1, we get rid of any intra- and
intermolecular hyperfine shift, so that the observed shifts
arise only from the long range dipolar demagnetizing field.
This study allowed us to measure the paramagnetic sus-
ceptibility of the various rare earth ions and to relate the
magnitude of the crystal field splitting with the depar-
ture of these measured values from those calculated for
the free ions. Secondly, we measured the longitudinal re-
laxation rates R1 = 1/T1 of the tetramethylammonium
protons for a fixed value of the lanthanide concentration
for all the elements of the 4f series. Strong differences with
the relaxation rate of Gd3+ complex are observed and are
related to the very short electronic relaxation times τ1e
and τ2e, which can be roughly estimated.

2 Experimental

2.1 Ionic solutions

Tetramethylammonium chloride (CH3)4NCl (Aldrich)
was recrystallized in ethanol and dried under vacuum for
24 h at 60 ◦C. A diamagnetic 0.1 mol l−1 stock solution
of (CH3)4NCl was made in pure heavy water (Eurisotop,
99.8 atom %D, sealed under argon). For such a moderate
concentration, this strong electrolyte is completely dis-
sociated in (CH3)4N+ and Cl− ions. Various concentra-
tions of Ln(D2O)3+

n were obtained in the stock solution by
adding weighed quantities of the Ln(NO3)3(H2O)x salts
(Aldrich), where x = 6 from Ce to Sm, and for Gd, and
where x = 5 for Eu, and from Tb to Yb. In order to elim-
inate the paramagnetic oxygen impurities, nitrogen was
bubbled through each sample for half an hour.

2.2 NMR measurements

2.2.1 Paramagnetic shifts

For various concentrations c of each lanthanide salt, we
measured the shifts ∆ν of the resonance line of the
(CH3)4N+ methyl protons with respect to its position
in the corresponding diamagnetic solution. This was per-
formed at T = 294 K on a high resolution liquid spec-
trometer AC-200 Bruker working at 200 MHz. The para-
magnetic concentration was varied between 4× 10−3 and
0.1 mol l−1 for each lanthanide salt, but Gd(NO3)3(H2O)6.
The spectrum of the diamagnetic solution was obtained by
locking the rf frequency as usual on a reference nucleus,

the deuterium 2H of the D2O solvent. Note that the lock-
ing frequency is affected in the same way as the studied
nuclei by the paramagnetic species, so that ∆ν remains
constant, equal to zero, and independent of the paramag-
netic concentrations, when the 2H lock works. Thus, for
each Ln3+ species, in order to measure the frequency shifts
∆ν, it is necessary to keep the same locking frequency for
all the samples. For that purpose, the 2H lock channel was
shut down after the measurement of the diamagnetic sam-
ple and the proton spectra for the paramagnetic solutions
were rapidly recorded with the same locking frequency
as for the diamagnetic sample. The accuracy on ∆ν was
0.5× 10−2 ppm. Now, the paramagnetic shifts depend on
the sample shape [16], which should be well-defined. All
our NMR tubes were cylindrical, with an internal diameter
d = 4.2 mm. The heights h of the samples were in a range
between 52 and 63 mm, leading to a ratio 12.5 ≤ h/d ≤ 15.
For calculating the distribution of the demagnetizing field
we took into account the fact that the detection rf coil is
only 16.5 mm high.

2.2.2 T1 relaxation times

The longitudinal relaxation times T1 of the methyl protons
of (CH3)4N+ cations were measured at T = 303 K by the
usual inversion recovery π−t−π/2 pulse sequence [17] on a
high resolution liquid spectrometer AM-300 Bruker work-
ing at 300 MHz. The experiments were performed both in
the diamagnetic solution without paramagnetic salt and
in the paramagnetic solutions, where the concentrations
of the lanthanide salts had a fixed value 0.1 mol l−1. Ad-
ditional measurements were done in the Tb3+ solution at
200 and 400 MHz, using a liquid spectrometer AC-200
Bruker and a Varian Unity high resolution spectrometer,
respectively.

3 NMR paramagnetic shifts

3.1 Relation with the effective Ln3+ magnetic
moments

Consider a diamagnetic solution with paramagnetic impu-
rities. In presence of an external magnetic field H0 along
the z direction, the magnetization per unit volume is

Mz = (χdia + χpara)H0. (1)

Then, in the absence of any hyperfine coupling with the
paramagnetic center, a nucleus is submitted to an addi-
tional magnetic field of dipolar origin. This dipolar field
depends on the position of the observed nucleus in the
sample. Its component along the direction of the applied
field is [16]

Hdip = Mz

(
4π

3
−Nzz

)
(2)
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where Nzz is the demagnetization coefficient given by

Nzz =

∫∫
S

zdS cos θ

r3
, (3)

S being the external surface of the liquid sample. The
position of the elementary surface element dS is defined
by r with respect to the studied nuclei, z is the component
of r along the field direction and θ the angle between this
field and the unit vector normal to dS and directed outside
the surface.

In comparing the resonance frequency in the diamag-
netic and paramagnetic solution we have a frequency shift

∆ν =
γIH0

2π
χpara

(
4π

3
−Nzz

)
∼= −ν0χparaSf , (4)

where Sf = Nzz − 4π/3 and ν0 is the working resonance
frequency.

Equivalently, the resonance frequencies in the param-
agnetic and diamagnetic solutions are related by

νpara = νdia (1− σp) ∼= ν0 (1− σp) , (5a)

with

σp = χparaSf . (5b)

In an infinitely long tube, Nzz vanishes and Sf = −4π/3 =
−4.19. But, for a cylindrical sample, Nzz is not rigorously
uniform and leads to an average shift and a broadening
of the resonance line. For the geometry considered in this
work and discussed in the experimental section, the dis-
tribution of Nzz, and consequently that of Sf , is sharply
peaked with a maximum at Sf = −4.10. The measured
proton line shape is in agreement with the calculated
shape which results from the demagnetizing field in the
cylinder and which displays a slight asymmetry with a
slower decrease towards the low frequencies in the range
of the high paramagnetic concentrations [16].

Let µeff be the effective magnetic moment of the Ln3+

complex in µB units. Introducing the individual thermal
magnetic moment 〈mz〉 of this complex in the direction of
the applied magnetic field H0 [18,19]

〈mz〉 =
µ2

eff µ
2
B

3kBT
H0, (6)

the molar paramagnetic susceptibility is

χM = NA
〈mz〉

H0
= NA

µ2
eff µ

2
B

3kBT
· (7)

Since the paramagnetic susceptibility is χpara = cχM ,
where c is the molar concentration of the paramagnetic
species, the molar susceptibility χM can be deduced from
the slope of the paramagnetic shift versus c. More pre-
cisely, we have

∆ν

νo
= −Sfcχ

M = 4.10cχM . (8)

At T = 294 K, expressing c in mol l−1, we have

∆ν

νo
= 1.74× 10−6µ2

eff c. (9)

At T = 294 K, for all the paramagnetic rare earth el-
ements, we have measured the paramagnetic shifts of
the protons of (CH3)4N+ in D2O solutions for various
concentrations c of Ln(D2O)3+

n , ranging between 0 and
0.1 mol l−1. For Gd3+ the experiment was performed at
much lower concentrations, between 0 and 0.0015 mol l−1,
because the (CH3)4N+ proton NMR line is much broader
than for the other lanthanides and easily overlaps with
the HOD proton signal. Indeed, there is a very strong
relaxation mechanism with the electronic magnetic mo-
ment of Gd3+ (see Sect. 4). Then, for all the investigated
Ln3+ solutions, the NMR signals of the (CH3)4N+ and
HOD protons are well-separated, as shown in Figure 1 for
the solution of Tm3+ at the concentration 0.042 mol l−1,
which is a representative case where the two signals are
1.6 ppm distant. We always obtain very accurate linear
laws for the relative shifts versus c. Typical results con-
cerning Pr3+ (4f2) and Er3+ (4f11) are shown in Figure 2.

From these data and equation (9) we derive the ex-
perimental values of µ2

eff with an accuracy of 2%. The re-
sults are reported in Table 1. It could be argued that for
concentrations of lanthanide salts as high as 0.1 mol l−1,
the Coulomb repulsion between two given ions (CH3)4N+

and Ln3+ is screened by the neighbouring ions to such
an extent that it becomes not strong enough to avoid the
paramagnetic hyperfine shift of the protons. For testing
this possibility, the paramagnetic shift in a solution con-
taining 0.1 mol l−1 of diamagnetic La(NO3)3(H2O)6 salt
was measured for various concentrations of Gd3+ salt be-
tween 0 and 0.0015 mol l−1. The observed shift is identical
to that already measured in the absence of the lanthanum
La3+ salt and is fully interpreted within the experimental
accuracy by using the free ion value µ2

eff = 63 in equa-

tion (9). More precisely, from this equation, we derived
µ2

eff = 62.8. This supports the assumption that the hy-
perfine paramagnetic shifts can be neglected even at the
highest ionic strengths considered in this study.

Now, we calculate µ2
eff for the various free trivalent rare

earth ions, neglecting any crystal field effect in a first step.
For all the Ln3+ (4fn) ions of the second half of the series
(n ≥ 7) we can restrict ourselves to the ground multiplet
J , since the first excited multiplet J ′ is 2000 cm−1 higher
for Tb3+, and generally more than 6500 cm−1 above, for
the other lanthanides [20a]. Then, µ2

eff = g2
JJ(J + 1). On

the other hand, for the first half of the series (n < 7),
there is a non negligible contribution of the first excited
multiplet J ′, arising essentially through the temperature
independent paramagnetic term. The latter is even domi-
nant in the case of Eu3+ (4f6), for which the ground state
7F0 is not magnetic and where the major contribution to
µ2

eff arises from the off-diagonal matrix elements of the

magnetic moment between the 7F0 and the excited 7F1

multiplet at 400 cm−1. The detailed calculation of µ2
eff in

this case is given in the appendix. The calculated values
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Fig. 1. Proton NMR spectrum at 200 MHz and 294 K of tetramethylammonium (CH3)4N+ (TMA+) ions and HOD molecules
in a typical D2O solution containing 0.1 mol l−1 of (CH3)4NCl, 0.48 × 10−2 mol l−1 of Tm3+ nitrate, and HOD species which
are present as impurities in the D2O solvent or come from the hydrated Tm3+ nitrate and from the atmosphere.

Fig. 2. Observed relative paramagnetic shifts ∆ν/ν0 of the
resonance line of the (CH3)4N+ protons versus the concentra-
tion c of Pr3+ (∗) and Er3+ (◦) in D2O solutions at 294 K. The
proton resonance frequency is ν0 = 200 MHz.

Table 1. Squares of the effective moment µeff of the various
Ln3+ ions in aqueous solutions at 294 K. The experimental
values derived from the expression (9) of the paramagnetic
shifts are compared with the theoretical results given by equa-
tion (A.1) of the Appendix.

Ln3+ µ2
eff measured µ2

eff calculated relative
(µB units) (µB units) difference (%)

Ce3+ 5.9 6.5 −9.2

Pr3+ 12.2 13.0 −6.2

Nd3+ 12.5 13.5 −7.4

Sm3+ 2.5 2.5 0

Eu3+ 10.0 9.9 +1

Gd3+ 62.6 63.0 −0.6

Tb3+ 92.3 94.5 −2.3

Dy3+ 110.7 113.3 −2.3

Ho3+ 112.2 112.5 −0.3

Er3+ 92.8 91.8 +1.1

Tm3+ 53.6 57.2 −6.3

Yb3+ 19.1 20.6 −7.3
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of µ2
eff and their relative differences with the theoretical

values are reported in Table 1.
At 294 K, the difference between the calculated values

of µ2
eff for the free ions and the experimental data never

exceed 9%. The latter are only given with an accuracy
of about 2%, mainly caused by the uncertainties on the
rare earth salt concentrations and on the experimental
temperature.

Except for Gd3+, where L = 0 in the ground 8S7/2

multiplet, and for Eu3+, where the ground state 7F0 is
not magnetic, all the discrepancies between the theoret-
ical and experimental values of µ2

eff obviously arise from
crystal field effects. From the values of these differences we
have attempted to estimate the magnitude of this ligand
field splitting on the ground multiplet.

3.2 Crystal field effects

In a recent paper Kowall et al. [21] have determined the
spatial distribution of the water molecules in the first co-
ordination shell around the lanthanide ions by molecular
dynamic simulation. They have shown that for the heavy
rare earth, beyond Gd3+, the rare earth trivalent ions are
surrounded by eight water molecules located at the corners
of a square antiprism. The angle between the diagonals of
the lower and upper square is very close to π/4. For the
light rare earth ions Ce3+, Pr3+, Nd3+, the oxygen atoms
of the coordinated water molecules form the nine vertices
of a tricapped trigonal prism. In the middle of the series
both structures coexist.

From the differences between the experimental and
theoretical µ2

eff values given in Table 1, it is possible to
derive a rough estimate of the total splitting of the ground
multiplet of the various Ln3+ cations.

Quite generally, the crystal field Hamiltonian Hcf act-
ing on a multiplet J can be written as

Hcf =
∑
k,q≥0

Aqk
〈
rk
〉
Ck(J)Oqk(J), (10)

where the Aqk are coefficients describing a particular crys-
tal field, 〈rk〉 are the average values of rk for a 4f electron,
Ck(J) are dimensionless coefficients appropriate to these
electrons in different J states and Oqk(J) are equivalent op-
erators [20b, 22]. In the usual notations Ck(J) are denoted
by 〈J ‖α‖ J〉, 〈J ‖β‖ J〉, and 〈J ‖γ‖J〉 for k = 2, 4, 6, re-
spectively. We recall that k is even and verifies k ≤ 6 for
f electrons.

According to the square antiprism C−4v symmetry of
the first hydration shell of each heavy lanthanide, the only
non vanishing terms in Hcf are A0

2, A0
4, A4

4, A0
6, and A4

6.
In cubic symmetry we recall that Hcf can be simply

written as [20c]

Hcf = B4

(
O0

4 + 5O4
4

)
+B6

(
O0

6 − 21O4
6

)
, (11)

with B4 = A0
4〈r

4〉C4(J) and B6 = A0
6〈r

6〉C6(J).
In the rare earth garnets, extensively studied by Ayant

et al. [23–25], the nearest neighbours of the Ln3+ cation

form a distorted cube, very similar to the square antiprism
geometry of the hydrated complex. In the garnets the mag-
netic properties were well-interpreted by neglecting the
second order terms k = 2 in equation (10) and by replac-
ing the purely cubic Hamiltonian (11) by

Hcf = B4

[
O0

4 + 5 cos(4α)O4
4

]
+B6

[
O0

6 − 21 cos(4α)O4
6

]
, (12)

where ±α are the twisting angles of two faces of the dis-
torted cube with respect to their positions in a cube. As
shown by Kowall et al. [21], α = π/8 in the hydrated lan-
thanide complexes of the second part of the series, and
Hcf reduces to

Hcf = B4O
0
4 +B6O

0
6. (13)

As we ignore the respective contributions of the 4th and
6th order terms in equation (13), we will only consider the
O0

4 term. This will not change the order of magnitude of
the overall splitting ∆ of the ground multiplet. Moreover,
despite the lower symmetry of the complexes of the first
part of the lanthanide series, we have estimated ∆ from
the simplified Hamiltonian B4O

0
4 for all the Ln3+ ions,

neglecting the terms in O0
2 and O0

6.
The theoretical value of µ2

eff is according to van Vleck

theory [18,19]

µ2
eff =

1

3

(
µ2
x + µ2

y + µ2
z

)
(14)

with

µ2
z =

1

Z

∑
A

exp

[
−
EA

kT

]Mz
AA − 2kT

∑
B 6=A

Mz
AB

EA −EB

 .

(15)

The various crystal fields levels EA, with eigenstates |A, i〉,
arise from the splitting of the ground multiplet J byHcf =
B4O

0
4. In equation (15), Z =

∑
A,i exp [−EA/kT ] is the

partition function and

Mz
AA = g2

J

∑
i,j

|〈A, i|Jz |A, j〉|
2

and Mz
AB = g2

J

∑
i,j

|〈A, i|Jz |B, j〉|
2

. (16)

Similar expressions hold for µ2
x and µ2

y. The diagonaliza-
tion of

Hcf = A0
4〈r

4〉C4(J)
[
35J4

z − 30J(J + 1)J2
z

+ 25J2
z − 6J(J + 1) + 3J2(J + 1)2

]
(17)

and the values of µ2
eff were obtained numerically.

For each Ln3+ ion, the coefficient A0
4〈r

4〉 was fitted in
such a way that the theoretical expression (14) of µ2

eff is
equal to the experimental value given in Table 1. The cal-
culated coefficient A0

4〈r
4〉 and the resulting overall crystal

field splitting ∆ are reported in Table 2.
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Table 2. Fitted values of the coefficient A0
4〈r

4〉 and of the total splitting ∆ of the crystal field for hydrated trivalent rare earth
cations. For the light Ln3+ ion, two values corresponding to the two possible signs of A0

4 are given.

Ln3+ Ce3+ Pr3+ Nd3+ Tb3+ Dy3+ Ho3+ Er3+ Tm3+ Yb3+

A0
4

〈
r4
〉

−220 −290 −600 −310 −370 [−320, 0] [−280, 0] −480 −190

(cm−1) 170 330 700

∆ 420 498 587 444 650 < 400 < 370 917 434

(cm−1) 324 567 685

Note that for the heavy Ln3+ ions (n ≥ 7) the sign of A0
4 is known, according to the geometry of the complex [26]. On the

contrary, for the light Ln3+ ions, the sign is unknown and we have performed calculations for both possibilities.

From Table 2, we see that the total splitting of
the ground multiplet ranges between 300 and 900 cm−1

and that
∣∣A0

4

〈
r4
〉∣∣ ranges between 200 and 600 cm−1.

These values are rather large compared to those observed
for other hydrated lanthanide complexes in the solid
state, such as Ln(C2H5SO4)3(H2O)9, where

∣∣A0
4〈r

4〉
∣∣ ∼=

80 cm−1 [22]. We have checked that adding terms of the
2nd and 6th order in the crystal field Hamiltonian did not
significantly change the values of ∆. Moreover, the inter-
centre distances between the Ln3+ cation and the Oδ−

atoms of the water complex in solution were estimated by
Kowall et al. [27] to be 2.50 Å for Nd3+ and 2.32 Å for
Yb3+. These estimates are close to the values 2.37 and
2.52 Å measured for solid erbium ethylsulfate [20d].

For Ho3+ and Er3+, since the observed and calculated
shifts differ by less than 1%, which is within our experi-
mental accuracy, we obtained lower bounds for intervals of
possible values of

∣∣A0
4〈r

4〉
∣∣ and ∆, by assuming deviations

equal to 1%. Note that in our rather concentrated liq-
uid solutions the temperature can be varied only between
about 285 and 325 K in order to avoid salt precipitation
and convection currents in the low and high temperature
limits, respectively. The possible temperature variation is
too restrictive for observing significant change of µ2

eff, as

shown in the most favorable case of Ce3+ where the total
crystal field splitting is the lowest. Indeed, increasing the
temperature by 30 K would change µ2

eff of Ce3+ from 5.87

to 5.95, i.e. by only 1.3%, which is of the order of the accu-
racy of the present NMR frequency shifts measurements.
So, getting more information about the positions of the
crystal field levels from experiments at different tempera-
tures appears hopeless.

To be complete, the values
∣∣A0

4〈r
4〉
∣∣ were also esti-

mated for Nd3+ and Yb3+, using a point charge model for
the coordinating water molecules, assumed to be located
at the vertices of a tricapped trigonal prism around Nd3+,
and at the corners of a square antisprim around Yb3+

[21,27]. In this simple treatment, each water molecule
is represented by a TIP3P model [28], polarized by the
strong electric field of the Ln3+ ion [27]. The chosen 〈r4〉
values include the decrease of the effective nuclear charge,
due to the electronic relativistic effects [29]. For both ions,
we obtain

∣∣A0
4〈r

4〉
∣∣ ∼= 30 cm−1, which is much lower than

the experimental data reported in Table 2. Even the re-
placement of one or two coordinating water molecules
of Nd3+ and Yb3+ by the more complexing negatively

charged nitrate anions [30] present in the solutions hardly
modifies the calculated

∣∣A0
4〈r

4〉
∣∣ values. This confirms the

inadequacy of the point charge model and shows that the
crystal field parameters can be strongly influenced by co-
valency effects, though the latter are expected to be small
in Ln3+ complexes [13].

4 Intermolecular dipolar relaxation

In a recent paper [14] we have studied the longitudinal
relaxation rate of the tetramethylammonium protons in
D2O solutions of hydrated paramagnetic Gd3+ ions in
presence of non-complexing ions like Cl− and ClO−4 . The
results were interpreted using the hypernetted chain ap-
proximation of the potential of mean force between the
repulsive ions Gd3+ and (CH3)4N+, modelled as charged
hard spheres in discrete polar and polarizable water. The
standard dipolar relaxation formalism of Solomon was
shown to be valid for the Gd3+ lanthanide at high fields,
which means that its electron relaxation times are much
larger than the translational correlation time of the inte-
rionic Brownian diffusion. Even in the presence of NO−3
anions, the agreement with experiment is excellent pro-
vided that the reduction of the effective charge of the Gd
complex due to the NO−3 coordination effect is taken into
account.

We have undertaken a systematic study of the longitu-
dinal intermolecular relaxation rate R1e of the (CH3)4N+

methyl protons due to their coupling with the Ln3+ mag-
netic electronic moments, for each magnetic Ln3+ ion
of the 4f series in D2O solution. The experiments were
performed in solutions containing 0.1 M of both salts,
(CH3)4NCl and Ln(NO3)3(H2O)x, at 303 K. The proton
resonance frequency was νI = 300 MHz.

The paramagnetic rates R1e are defined as

R1e = R1 −R10 = 1/T1 − 1/T10, (18)

where T1 and T10 are the measured longitudinal relaxation
times in the para- and diamagnetic solutions respectively.
The experimental results are given in the second column
of Table 3.

4.1 The Solomon model of relaxation

In a first step we have used the same Solomon formalism as
in [14]. This means that any crystal field effect is neglected
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Table 3. Experimental and theoretical intermolecular dipo-
lar relaxation rates R1e of the (CH3)4N+ protons in heavy
water solutions containing 0.1 M of paramagnetic Ln3+ ions
at 303 K. The proton resonance frequency is νI = 300 MHz.
RSolomon

1e , RCurie fundamental
1e , and RCurie

1e respectively refer to the
Solomon expression (20), to the Curie term calculated for the
free ion ground multiplet and given by equations (22, 23), and
to the experimental “true” Curie term, which includes the crys-
tal field effects and is given by equations (6, 9, 22).

Ln3+ Rexp
1e RSolomon

1e RCurie fundamental
1e RCurie

1e

(s−1) (s−1) (s−1) (s−1)

Ce3+ 0.047 8.73 0.0046 0.0038

Pr3+ 0.083 17.4 0.018 0.016

Nd3+ 0.138 17.8 0.019 0.017

Sm3+ 0.057 0.97 5.6× 10−5 6.9 × 10−4

Eu3+ 0.031 0 0 0.011

Gd3+ 85.6 85.6 0.44 0.44

Tb3+ 1.97 128 0.98 0.94

Dy3+ 2.22 154 1.42 1.35

Ho3+ 2.41 153 1.39 1.39

Er3+ 2.24 125 0.93 0.95

Tm3+ 1.81 77.6 0.36 0.32

Yb3+ 0.27 27.9 0.047 0.040

Note that the RSolomon
1e value chosen for Gd3+ in the 3rd col-

umn is the experimental determination 85.6 s−1, assumed to
be more accurate than the theoretical estimate 92 s−1. The
values of RSolomon

1e for all the other Ln3+ ions are then derived
from equation (20).

and that the external magnetic field H0 splits the free ion
ground state multiplet J into 2J+1 Zeeman levels, which
are equally spaced by ~ωJ = gJµBH0 and the lifetimes of
which are much longer than the characteristic correlation
time τ of the interionic diffusion. Then, the relaxation rate
of the intermolecular dipolar magnetic coupling is

RSolomon
1e =

8π2

5
γ2
I (gJµB)2J (J + 1)

×
NJτ

πb3

[
̄2(ωIτ) +

7

3
̄2(ωJτ)

]
. (19)

NJ is the number density of the paramagnetic ions, b the
minimal distance of approach of the centers of the two
ions considered as hard spheres, τ = b2/D their trans-
lational correlation time, D being their relative diffusion
constant. The nuclear and electronic Larmor angular fre-
quencies are ωI and ωJ . The functions ̄2(ωIτ) and ̄2(ωJτ)
are dimensionless spectral densities [14,31], characteristic
of the relative interionic diffusion. As ωJτ � 1, the func-
tion ̄2(ωJτ) is always negligible.

4.1.1 The relative motion of the reference (CH3)4N+/Gd3+

ion pair

The water-water correlation functions, which yield the sol-
vent structure at the two-particle level, were calculated

using the RLHNC approximation of the integral equation
theory [31]. At 30 ◦C, this approximation leads to a the-
oretical dielectric constant of water ε = 75.9 in excel-
lent agreement with the experimental value 76.67 [32].
This ensures an accurate treatment of the long range
Coulomb forces between the ions. The interionic poten-
tial of mean force was computed using the Debye-Hückel
screening limit [31]. The translational self-diffusion co-
efficient Dt

I of (CH3)4N+ was measured by the NMR
pulsed magnetic field gradient (PMFG) technique applied
at 400 MHz to the resonant protons [14]. At 30 ◦C, in
the studied paramagnetic solutions containing 0.1 M of
(CH3)4NCl, the measured self-diffusion constant has the
value Dt

I(30 ◦C) = 1.02×10−5 cm2 s−1, which is obviously
independent of the NMR frequency. It is 13.3% larger than
the 25 ◦C value 0.90× 10−5 cm2 s−1, which was obtained
in the more dilute solutions of Gd(NO3)3 salt [14]. In the
studied solution, in the absence of a direct determination
of the self-diffusion constant Dt

J of the Gd3+ cation by
the radioactive tracer 153Gd [33], we assumed that the
relative ion-ion diffusion constant D = Dt

I + Dt
J under-

goes the same 13.3% increase as Dt
I , and thus passes from

1.29× 10−5 cm2 s−1 at 25 ◦C [14] to 1.46× 10−5 cm2 s−1

at 30 ◦C. Then, as the diffusion constants are known to
within a few per cent, the translational correlation time is
τ = (2.7±0.13)×10−10 s, which is much shorter than the
characteristic times of the Gd3+ electronic relaxation in-
duced by the modulation of the zero field splitting (ZFS)
[14,34,35]. The Solomon relaxation model applies and, for
a totally hydrated complex Gd(D2O)3+

n , the theoretical re-
laxation rate (19) obtained using the approximate τ value
given above is RSolomon

1e = (92 ± 5) s−1, in good agree-
ment with the experimental value Rexp

1e = 85.6 ± 5 s−1.
If one or two coordinating water molecules are replaced
by a more complexing NO−3 anion in all the Gd(D2O)3+

n

species, the Solomon relaxation rate becomes 96.9 s−1,
to the extent that the charge +2 of the newly formed
complex Gd(NO3)(D2O)2+

p is located at its center. This
hypothesis neglects the possible formation of ion triplets,
made of a Gd3+ cation bridged by the large NO−3 anion to
a (CH3)4N+ cation. Such a situation may be rather fre-
quent in the solution considered here, which is somewhat
concentrated in nitrate anions. It favors an increase of the
distance between a (CH3)4N+ proton and the Gd3+ spin,
lowering the relaxation rate. To sum it up, in the paramag-
netic solution studied here, the predictions of the Solomon
theory are only accurate to within 10% because of the un-
certainties of the molecular models. This is nevertheless
remarkable as there is no adjustable parameter.

4.1.2 Application to the various Ln3+ cations

In the rest of this paper, the relative microdynamics of
each (CH3)4N+/Ln3+ ion pair will be assumed to be the
same as that of the reference (CH3)4N+/Gd3+ pair. This
hypothesis is justified as follows. We checked that the self-
diffusion coefficientDt

I of (CH3)4N+ in D2O is not affected
by the change of the Ln3+ cation. Within the experimental
errors, the same value Dt

I(30 ◦C) = 1.02 × 10−5 cm2 s−1
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was found both for a 0.1 M concentration of La(NO3)3,
Ce(NO3)3, Yb(NO3)3, and Lu(NO3)3, and for a 0.02 M
concentration of Gd(NO3)3 and Ho(NO3)3. Lower con-
centrations were used for the last two salts because of
NMR technical reasons. This prevents the proton reso-
nance line from being too large for Gd3+ and too shifted
for Ho3+. Similarly, extensive radioactive tracer measure-
ments [33] in dilute H2O solutions showed that the Ln3+

self-diffusion coefficient Dt
J varies by only 5 to 7% along

the lanthanide series. Finally, between Ce3+ and Yb3+,
the Ln3+ crystal radii [36] are equal to the radius of Gd3+

to within ±0.07 Å. The relative change of the effective
diameter of the hydrated Ln(D2O)3+

n with respect to the

reference Gd(D2O)3+
n value dJ ∼= 7.8 Å is very minor.

Its effects can be neglected, both on the collision diame-
ter b and on the ion-ion potential of mean force. Conse-
quently, the same relative microdynamics can be used for
of each (CH3)4N+/Ln3+ pair. Then, for an Ln3+ ion with
a ground multiplet J and a Landé factor gJ ,

RSolomon
1e

(
Ln3+

)
RSolomon

1e (Gd3+)
=

g2
JJ (J + 1)

g2
GdSGd (SGd + 1)

, (20)

where JGd = SGd = 7/2 is the total Gd3+ spin and
gGd = 2. The values of RSolomon

1e (Ln3+) obtained us-
ing this equation and the “exact” experimental value
RSolomon

1e (Gd3+) ∼= Rexp
1e (Gd3+) = 85.6 s−1 are reported

in the third column of Table 3.
Apart for the case of Eu3+ with a non magnetic ground

state multiplet, all the measuredRexp
1e are about two orders

of magnitude lower than the calculated Solomon values.
Obviously, the Solomon model is not appropriate for the
trivalent rare ions, but Gd3+.

A priori, this discrepancy may arise from two differ-
ent phenomena: the crystal field splitting effects and the
short lifetimes of the crystal field levels. The quenching
of the total angular momentum J by the crystal field is
unlikely at the origin of the above discrepancy. Indeed,
with the values of the total crystal field splitting ∆ deter-
mined in the previous section, many crystal field levels are
significantly populated at ambient temperature. It should
be noted that R1e is not simply proportional to µ2

eff. A
complete and tractable theory of the relaxation of nuclei
due to paramagnetic impurities with crystal field splitted
multiplets is very complex and not yet available, as far as
we know. Roughly speaking, the influence of several fluc-
tuating crystal field levels which are thermally populated
should be calculated, without forgetting that the complex
has both translational and rotational motions with respect
to the (CH3)4N+ probe. We are working on the subject,
but a satisfactory model is not yet achieved. However, a
rough estimate of the crystal field effects can be inferred
for rare earth trivalent ions with an odd number of elec-
trons in cubic symmetry. Then, we have a set of Kramers
doublets (or quartets) with isotropic g values for the dou-
blets. The contribution of each of the doublets to R1e is
g2S̃(S̃ + 1), where S̃ is a pseudospin S̃ = 1/2, instead of
g2
JJ(J+1) as in the case of the total J multiplet. Then, in

the limit where only the ground state were populated, the
calculated relaxation rate R1e would be lowered by less

than a factor of 4, which is far from the observed reduc-
tion. For example [20e], the ratio g2S̃(S̃ + 1)/g2

JJ(J + 1)
would be 0.24 for Ce3+ in the Γ7 state. For Yb3+, it would
be 0.26 and 0.43 in the Γ6 and Γ7 doublets, respectively.
Now, if several Kramers doublets are populated, assuming
that their g values are nearly equal would lead to the same
reduction factor.

On the other hand, mechanisms, such as the Raman
and Orbach processes [20f] and/or the chemical exchange
between the coordinating and the non-coordinating water
molecules [27], can induce very fast transitions between
the various crystal field levels. This leads to an effec-
tive lifetime of the electronic magnetic moment. In other
words, a strong attenuation of the correlation between the
components of the total angular momentum occurs.

4.2 The Curie contribution to the relaxation

At the limit of very short electronic relaxation times, a
nucleus of the solution is still submitted to a random mag-
netic field, due to the individual thermal average paramag-
netic moments 〈mz〉 of the complexes, which are induced
by the external magnetic field and given by equation (6).
The moment 〈mz〉 is much weaker than the magnitude of
the moment mJ = −gJµBJ of the stable free ion in its
ground multiplet J . It precisely yields the paramagnetic
contribution to the static susceptibility of the sample and
is at the origin of the paramagnetic shift studied in the pre-
vious section. It also leads to the Curie “spin” relaxation
mechanism [4,37], the contribution of which to the total
paramagnetic relaxation rate R1e is given by a Curie term,
RCurie

1e . For the intermolecular dipolar nuclear-electronic
coupling considered here, the Curie term is

RCurie
1e =

24π2

5
γ2
I 〈mz〉

2 NJτ

πb3
̄2(ωIτ), (21)

with the same notations as in equation (19). It is reason-
able to suppose that all the (CH3)4N+/Ln3+ pairs have
nearly the same relative microdynamics. Then, the spec-
tral density ̄2(ωIτ) is independent of the pair. As in equa-
tion (20), since ̄2(ωJτ) ∼= 0 for Gd3+, we obtain

RCurie
1e

(
Ln3+

)
RSolomon

1e (Gd3+)
=

〈mz〉
2

1
3g

2
Gdµ

2
BSGd(SGd + 1)

, (22)

where again RSolomon
1e (Gd3+) ∼= Rexp

1e (Gd3+) = 85.6 s−1.
For an Ln3+ ion, assuming that the only populated mag-
netic levels are those of the ground multiplet J and ne-
glecting the effects of the crystal field splitting, the ther-
mal moment 〈mz〉 reduces to

〈mz〉 = 〈−gJµBJz〉 =
g2
Jµ

2
BJ (J + 1)H0

3kT
· (23)

The corresponding values of RCurie
1e for the ground multi-

plet J are reported in the 4th column of Table 3. Using the
measured values of µ2

eff given in Table 1, the true values

of RCurie
1e can be obtained from equations (6, 22). They

are given in the 5th column of Table 3.
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For Gd3+, the Curie mechanism is negligible, which
justifies the assumptionRSolomon

1e (Gd3+) ∼= Rexp
1e (Gd3+) =

85.6 s−1. For Tb3+, Dy3+, Ho3+, and Er3+, our results
show that RCurie

1e is ≥ 50% of the observed value of Rexp
1e .

This means that the Curie relaxation mechanism accounts
for the major part of the measured relaxation rates in
these cases. In other words the electronic relaxation times
of these ions must be very short. For all the other Ln3+

ions, the ratio RCurie
1e /Rexp

1e ranges between 0.08 and 0.2,
except for Sm3+, where the gJ factor is particularly small.

To sum it up, the observed intermolecular relaxation
rates Rexp

1e are intermediate between those calculated from
the Solomon standard model and those resulting from the
Curie relaxation mechanism. This means that the elec-
tronic relaxation times τe are shorter than the transla-
tional correlation time τ = 2.7× 10−10 s.

4.3 The effects of the electron relaxation

In order to estimate τe, we develop a crude model which is
an extension to that proposed by Guéron [37] for the sim-
ple case of a nucleus I in dipolar interaction with a “pure”
electronic spin S at a relative position r. Here, the inter-
spin position r is not fixed in a molecular reference frame,
but modulated by the translational Brownian motion of
the interacting ion pair. It is worth noting that we neglect
the influence of the crystal field splitting for the following
two reasons. Firstly, its effect on the Curie relaxation is
relatively modest. It corresponds to the replacement of the
calculated value of µ2

eff by its experimental counterpart of

Table 1 in the expression (6) of 〈mz〉, which is used to cal-
culate the Curie contribution (22). Secondly, its influence
on the Solomon relaxation is difficult to calculate in the
absence of a detailed knowledge of the crystal field levels
and of the associated eigenstates. Moreover, in presence of
several crystal field levels, the electronic relaxation is gov-
erned by several relaxation times. A rigorous treatment is
an extremely difficult task.

Therefore, we consider the simple case of an electronic
spin S, of isotropic gS = 2, submitted to a principal
Zeeman Hamiltonian. We need to calculate the quantum
correlation functions of the components of S, kzz(t) =
〈SzSz(t)〉 and k+−(t) = 〈S+S−(t)〉, which in the high tem-
perature limit are the ensemble averages

kzz(t) =
1

2S + 1
Tre

[
SzU

†
e (t)SzUe(t)

]
, (24a)

k+−(t) =
1

2S + 1
Tre

[
S+U

†
e (t)S−Ue(t)

]
. (24b)

Tre is the trace of the subspace of the electronic spin
states, Ue is the evolution operator in this space and the
bar stands for the ensemble average over the other degrees
of freedom of the complex. When only the Zeeman Hamil-
tonian acts on the spin S, these functions display constant
or periodic behaviors. However, the existence of small fluc-
tuating perturbations is responsible of their time decays.
Following Guéron [37], we assume that kzz and k+− have

exponential relaxations, characterized by single relaxation
times τ1e and τ2e respectively, i.e.

dkzz

dt
= −

1

τ1e
[kzz − kzz(t =∞)]

and
dk̂+−

dt
= −

1

τ2e

[
k̂+− − k̂+−(t =∞)

]
, (25)

with k̂+− = exp(iωst)k+−. For t = 0, kzz(0) = 〈S2
z 〉 =

(1/3)S(S + 1) and k̂+−(0) = 〈S+S−〉 = (2/3)S(S + 1),

while for t → ∞, kzz(∞) = 〈Sz〉2 and k̂+−(∞) =
〈S+〉〈S−〉 = 0. Consequently,

kzz(t) =

[
1

3
S(S + 1)− 〈Sz〉

2

]
exp

(
−

t

τ1e

)
+ 〈Sz〉

2
,

(26a)

k+−(t) =
2

3
S(S + 1) exp

(
−iωSt−

t

τ2e

)
. (26b)

It is quite reasonable to suppose that the spatial molec-
ular diffusion and the motion of the electronic angular
momentum are uncorrelated. Then, the correlation func-
tions Cαβ(t), which are relevant to the nucleus-electron
dipole-dipole interaction, are simply the products

Cαβ(t) = g2(t)kαβ(t), (27)

of the spatial correlation function g2(t) of the interspin
position [38,39] and of the correlation functions of the
spin components kzz , k+−, or k−+ = k∗+−. The method for
calculating g2(t) is explained elsewhere in detail [39]. Its
Fourier transform j2(ω) = (NJτ/πb

3)̄2(ωτ) is involved
in the expression (19), which successfully applies to the
relaxation by the Gd3+ ions.

We are now in a position to give the general expression
of the theoretical intermolecular dipolar nuclear-electron
relaxation rate R1e due to electronic spins, the compo-
nents of which have correlation functions that decay ac-
cording to equations (26). Introduce the spectral den-
sity j2(ω, 1/τe), and the associated dimensionless reduced
quantity ̄2(ωτ, τ/τe), defined by

j2

(
ω,

1

τe

)
=
NSτ

πb3
̄2

(
ωτ,

τ

τe

)

=
1

2π

+∞∫
−∞

g2(t)e−iωte−t/τedt. (28)

The new expression of R1e, which should be used instead
of equation (19), reads

RGuéron
1S =

24π2

5
γ2
I (gSµB)2NSτ

πb3

×

{[
S(S + 1)

3
− 〈Sz〉

2

]
̄2

(
ωIτ,

τ

τ1e

)
+ 〈Sz〉

2
̄2(ωIτ) +

7

9
S(S + 1)̄2

(
ωSτ,

τ

τ2e

)}
, (29)
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where ̄2(ωIτ) = ̄2(ωIτ, 0) is the usual dimensionless
spectral density [14,31]. The relaxation rate RGuéron

1S can
be splitted into the Curie contribution

RCurie
1S =

24π2

5
γ2
I (gSµB)2NSτ

πb3
〈Sz〉

2
̄2(ωIτ) (30)

of the S multiplet and into the Solomon-Bloembergen
(SB) term [40–42] for the intermolecular dipolar nuclear-
electron coupling

RSB
1S =

8π2

5
γ2
I (gSµB)2NSτ

πb3
S(S + 1)

×

{
̄2

(
ωIτ,

τ

τ1e

)
+

7

3
̄2

(
ωSτ,

τ

τ2e

)}
, (31)

which corresponds to the attenuated Solomon mechanism
and where, as usual, the square of the thermal spin 〈Sz〉2

is neglected with respect to the much larger quantity
(1/3)[S(S + 1)].

For all the Ln3+ cations, there are many populated
magnetic levels, so that the thermal moment −gSµB〈Sz〉
of the ground S multiplet of Gd3+ should be replaced by
the individual moment 〈mz〉 defined by equation (6). The
Curie term is given by equations (21) or (22). On the other
hand, the SB expression (31), which was derived for a
pure spin S submitted to a principal Zeeman Hamiltonian,
does not apply any more in principle, because crystal field
effects [12,43,44] and/or excited magnetic multiplets are
present. However, at the present stage of theory, there
is no accurate ab initio description of these phenomena,
which will be neglected here. Following a well-established,
but improper usage [12,45,46], we shall thus extend the
SB equation to the ground J multiplet of the trivalent rare
earth cations. A formal and simple replacement of S by J
in equation (31) gives the general tractable formula

RSB
1J =

8π2

5
γ2
I (gJµB)2NJτ

πb3
J(J + 1)

×

{
̄2

(
ωIτ,

τ

τ1e

)
+

7

3
̄2

(
ωJτ,

τ

τ2e

)}
· (32)

To sum it up, in the presence of electronic relaxation
effects, the theoretical intermolecular dipolar nuclear-
electron relaxation rate R1e reads

R1e = RSB
1J +RCurie

1e , (33)

where RSB
1J and RCurie

1e are given by equations (32)
and (21) or (22), respectively.

The electronic relaxation times τ1e and τ2e will now
be tentatively estimated. The spectral densities in equa-
tion (32) are computed from the relation

j2

(
ω,

1

τe

)
=
NSτ

πb3
̄2

(
ωτ,

τ

τe

)
=

1

π
<g̃2

(
σ = iω +

1

τe

)
, (34)

where g̃2(σ) is the Laplace transform of the time corre-
lation function g2(t) of the relative microdynamics of the

Table 4. Electronic relaxation times τ1e and τ2e of the Ln3+

ions in heavy water solutions at 303 K and in a magnetic field
H0
∼= 70 kG, which corresponds to a proton resonance fre-

quency νI = 300 MHz. The ratio
R

exp
1e −R

Curie
1e

RSolomon
1e

represents the

relative attenuation of the Solomon process due to the short
life times of the electronic levels. The values of τ1e and τ2e
were fitted from equation (35) under two reasonable assump-
tions: (i) τ1e = τ2e and (ii) τ1e = 10τ2e.

Ln3+ 103 R
exp
1e −R

Curie
1e

RSolomon
1e

τ1e = τ2e τ1e = 10τ2e

(ps) (ps)

Ce3+ 4.9 0.10 0.27

Pr3+ 3.8 0.08 0.21

Nd3+ 6.8 0.14 0.37

Tb3+ 8.0 0.17 0.44

Dy3+ 5.6 0.11 0.31

Ho3+ 6.7 0.14 0.37

Er3+ 10.4 0.22 0.58

Tm3+ 19.2 0.48 1.09

Yb3+ 8.2 0.17 0.45

(CH3)4N+/Ln3+ pair. The relevant electronic relaxation
times of each Ln3+ ions were obtained by fitting τ1e and
τ2e, so that the ratio

̄2

(
ωIτ,

τ

τ1e

)
+

7

3
̄2

(
ωJτ,

τ

τ2e

)
̄2(ωIτ)

∼=
Rexp

1e −R
Curie
1e

RSolomon
1e

(35)

agrees with the experimental value of the second column
of Table 4. In the absence of any known theoretical re-
lation between τ1e and τ2e, we assume τ1e = τ2e in a
first step. The results are given in the third column of
Table 4. These electronic times range between 0.08 and
0.14 ps for the light lanthanides and between 0.11 and
0.48 ps for the heavy lanthanides. The above values are
very similar to those obtained by Bertini et al. by ex-
tensive measurements of the water proton relaxation [12].
They found 0.08 ps ≤ τe ≤ 0.39 ps if the effects of the
crystal field are neglected, and 0.16 ps ≤ τe ≤ 0.99 ps by
taking its influence into account. For the sake of complete-
ness, in the last column of Table 4, we have also reported
the electronic relaxation times, assuming a reasonable ra-
tio τ1e = 10τ2e, as measured for instance at high fields
for Gd3+ in solution [34]. Then, the effective longitudi-
nal electronic relaxation times τ1e are about three times
longer.

Now, consider the influence of the various quantities of
the model of interionic motion. The electronic relaxation
times τe, derived from equation (35), are essentially pro-
portional to the translational correlation time τ . They are
affected by the same uncertainty of the order of 5%. We
checked that decreasing the effective charge of the Ln3+

complex from 3 to 2, because of the replacement of one
or two coordinating water molecules by a nitrate anion
[14,30], leads to a variation of τe of only a few percents.
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Similarly, by dividing the rotational diffusion constant
Dr
I [31,39] by a factor of 2, the fitted τe values vary

by less than 1%. Finally, the spectral densities ̄2(ωτ, τ
τe

)
are known to be particularly sensitive to the eccentric-
ities of the interacting spins for the large values of the
arguments [39,47]. In the limit of a total neglect of the
eccentricities effects, i.e. when the (CH3)4N+ protons are
taken to be located at the ion center, there is an increase
of 20% of the fitted τe values. To sum it up, the present
intermolecular NMR relaxation method is able to yield τ1e
and τ2e to within 10–20% for a given model of electronic
relaxation.

5 Discussion and conclusion

The present method for analyzing the size of the crys-
tal field of trivalent rare earth complexes in solution rests
on the simple and fast measurement of the paramagnetic
shifts of the proton resonance line of an intermolecular
probe solute, which are due to the long range demagne-
tizing field created by the paramagnetic complexes. This
method applies to any kind of labile paramagnetic com-
plexes, including 5f actinide ions. It should be emphasized
that it also yields accurate values of the individual ther-
mal magnetic moments of the paramagnetic species, which
give rise to the Curie relaxation contribution.

Concerning the relaxation of the protons on the tetra-
methylammonium probe due to their intermolecular dipo-
lar coupling with the lanthanide magnetic moments, sev-
eral remarkable features can be derived from this study.
For all the rare earth cations, but Sm3+, Eu3+, and Gd3+,
the usual Solomon theory gives theoretical relaxation rates
R1e which are about 100 times larger than the observed
values. This is a direct evidence of the short lifetimes of
the electronic levels. The ratio RSolomon

1e /Rexp
1e for Sm3+

is only 17, which is due to the particularly small value of
the Landé factor gJ of the 6H5/2 ground multiplet. Eu3+

and Gd3+ are particular cases because their ground multi-
plets are either not magnetic, or with Zeeman levels with
long lifetimes [14, 20a]. Furthermore, the Curie relaxation
mechanism contributes between 8 and 19% for the light
Ln3+ ions and between 15 and 61% for the heavy Ln3+

ions. For Tb3+, Dy3+, Ho3+, and Er3+, this contribution
explains about half of the observed relaxation rates. This
was confirmed by measuring T1 in the Tb3+ solution at
200 and 400 MHz. At 303 K, the (CH3)4N+ proton relax-
ation rate Rexp

1e varies from 2.09 at 200 MHz to 3.17 s−1 at
400 MHz. The calculated Curie contribution to the relax-
ation increases from 0.47 to 1.52 s−1 under the same fre-
quency change, while the expression (32) of RSB

1J remains
nearly constant, due to the short values of the electronic
relaxation times which are assumed to be independent of
the applied magnetic field H0. Thus, the Curie rate shows
an increase of 1.05 s−1 which is nearly equal to the varia-
tion 1.08 s−1 ofRexp

1e , confirming the relevance of the Curie
mechanism in this case. This shows that the lifetimes τe
of the electronic levels are very short in the solutions of
Ln3+ ions, but Gd3+. For all the Ln3+ ions, but Gd3+

and Eu3+, we have been able to estimate the electronic
relaxation times τ1e = τ2e, which range between 0.1 and
0.5 ps.

The present intermolecular NMR relaxation method
for estimating τe requires a minimum of experimental
data, i.e. a unique working NMR frequency and a unique
concentration of each paramagnetic Ln3+ species. Indeed,
no adjustable parameter is required for describing the in-
termolecular diffusion of the probe and of the Ln3+ cation.
Therefore, we get rid of the ambiguities in the interpre-
tation of the water proton relaxation. Such ambiguities
arise from the existence of several adjustable parameters
and have been overcome by nuclear magnetic relaxation
dispersion (NMRD) studies [12,48]. The next theoretical
step will consist in modeling the electronic relaxation due
to crystal field fluctuations, by extending the treatment
which was proposed by Bayburt and Sharp [43,44] and is
relative to the zero field splitting fluctuations acting on
the pure spins of the cations of the iron group.

We are glad to thank Dr. A. Gadelle, C. Lebrun and P.A. Bayle
for their help on the relaxation measurement in the Tb3+ so-
lution at 400 MHz.

Appendix: Calculation of µ2
eff for the free rare

earth ions

We assume that we have several multiplets characterized
by the total angular momentum quantum number J , aris-
ing from the ground L, S term [20]. According to the well-
known van Vleck theory [18,19]

µ2
eff =

1

Z

[∑
J

MJJ exp

(
−EJ
kT

)

− 2kT
∑
J′ 6=J

exp (−EJ′/kT )MJJ′

(EJ −EJ′)

]
, (A.1)

where

Z =
∑
J

(2J + 1) exp (−EJ/kT ) (A.2)

is the partition function. MJJ and MJJ′ are related to
the matrix elements of the total magnetic moment M =
− (L + 2S) (in µB units)

MJJ =
J∑

M=−J

J∑
M′=−J

|〈JM |M|JM ′〉|
2

and MJJ′ =
J∑

M=−J

J′∑
M′=−J′

|〈JM |M|J ′M ′〉|
2

, (A.3)

where for brievety the states |LSJM〉 have been denoted
by |JM〉. In the subspace of the J multiplet, M = −gJJ.
Denoting the Landé factor by gJ , we simply have

MJJ = g2
J (2J + 1)J (J + 1) . (A.4)
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When J ′ 6= J , according to the spherical symmetry of the
problem, since M = −J− S,

MJJ′ = 3
∑
M,M′

|〈JM |Mz|J
′M ′〉|

2

= 3
∑
M,M′

|〈JM |Sz|J
′M ′〉|

2
. (A.5)

From the Wigner Eckart theorem [49], the selection rules
J = J ± 1 and M ′ = M hold, so that

〈JM |Sz|J + 1M〉 = 〈J + 1M |Sz|JM〉

= A (J, J + 1)
√

(J + 1)2 −M2,
(A.6)

where A(J, J + 1) is the reduced matrix element. Then

MJ J+1 = A(J, J + 1)2(2J + 1)(J + 1)(2J + 3). (A.7)

Moreover in the basis |LSJM〉 [50]

A(J, J + 1)2 =

(J + 1 + L− S)(J + 1− L+ S)(J + 2 + L+ S)(L+ S − J)

4(J + 1)2(2J + 1)(2J + 3)
·

(A.8)

Finally,

MJ J+1 =

(J + 1 + L− S)(J + 1− L+ S)(J + 2 + L+ S)(L+ S − J)

4(J + 1)
·

(A.9)

For the trivalent rare earth ions of the first series, the elec-
tron configuration is 4fn with n < 7. The ground multi-
plet is J0 = L − S and the next excited multiplets are
J0 + 1, J0 + 2 . . . For the value of J0, we get from (A.9)

MJ0 J0+1 =
S(L+ 1)(2J0 + 1)

L− S + 1
· (A.10)

For the ions of the second series, n ≥ 7 and the ground
multiplet is J0 = L + S. The next excited multiplets are
J0 − 1, J0 − 2. A similar calculation gives

MJ0 J0−1 =
LS(2J0 + 1)

L+ S
· (A.11)

Coming back to the general expression (A.1), if EJ′ −
EJ � kT , µ2

eff reduces to MJ0 J0 = g2
J0
J0(J0 + 1), which

represents the Curie term of the ground multiplet. On the
other hand if EJ′−EJ is not much larger than kT , we have
additional contributions from both the other MJJ terms,
i.e. the Curie contribution of mainly the first excited mul-
tiplet, and from the MJJ′ terms, which are responsible for
the temperature independent paramagnetism.

We treat the particular example of Eu3+ (4f6) more
precisely. In this case, L = 3, S = 3, and the ground
multiplet is not magnetic, since J = 0. The first excited
multiplet J = 1 is at E1 −E0 = ∆ = 400 cm−1 [20a] and

the second multiplet J = 2 is estimated from the Landé
interval rule to be at E2 − E0 = 3∆ = 1200 cm−1. For
T = 294 K, we obtain exp(−∆/kT ) = 0.141, Z = 1.437,
M00 = 0, M11 = 13.5, M22 = 67.5, M01 = 12, M12 = 22.5,
and µ2

eff = 1.325+0.132+7.323+1.104 = 9.884, where the
first two terms are the Curie contributions of the J = 1
and 2 multiplets, whereas the last two terms correspond to
the constant paramagnetic contributions J = 0 → J = 1
and J = 1 → J = 2. The interlevel contribution arising
from M01 is by far dominant.
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